skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "M. Nayfeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, a three-class machine learning (ML) model is implemented on an unmanned aerial vehicle (UAV) with a Raspberry Pi processor for classifying two global positioning system (GPS) spoofing attacks (i.e., static, dynamic) in real-time. First, several models are developed and tested utilizing a dataset collected in a previous work. This dataset conveys GPS-specific features, including location information. Models evaluations are carried out using the detection rate, F-score, false alarm rate, and misdetection rate, which all showed an acceptable performance. Then, the optimum model is loaded to the processor and tested for real-time detection and classification. Location-dependent applications, such as fixed-route public transportations are expected to benefit from the methodology presented herein as the longitude, latitude, and altitude features are characterized in the developed model. 
    more » « less